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Introduction




Heavy quarkonia in HIl collisions (1)

Heavy quarkonia are good candidates to probe the QGP in heavy
lon collisions because:

- they have large masses and are radius
(dominantly) produced at the early 3.1GeV 0.50fm
stage of the collision, via hard-
scattering of gluons.

95GeV 0.28fm

* they are strongly bound (small radius)
and weakly coupled to light mesons.

Sensitive to the formation of a quark gluon plasma via color screening:
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Heavy quarkonia in HIl collisions (2)

However:

1. Although heavy quarkonia are hard probes, the production
mechanism (in p+p) in not well understood,;

2. There are many effects that can alter this production in presence of
normal nuclear matter (in e.g. p(d)+A);

3. Itis unclear how to extrapolate, and subtract these effects from what
IS measured in A+A, to single-out QGP effects.

Still:

As a resonance, heavy quarkonia are easy to measure (and separate
from background) as opposed to most other hard probes (photons, open
heavy flavors, jets)



Heavy quarkonia measurements in PHENIX
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* p+p collisions:
production mechanism
paseline for heavy ions

* d+Au collisions:
cold nuclear matter effects

e Cu+Cu and Au+Au:
hot nuclear matter effects



|. p+p collisions:

- production mechanism
- baseline for d+A and A+A collisions




J/p measurements (1)
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Higher statistics and better control over systematics
Excellent agreement with published results

— Better constraints on models



JIy

measurements (2)
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Production mechanism

Several models available, that differ mainly on how the cc pair formed
during the initial parton scattering (gg at RHIC) is neutralized prior to
forming the J/y

 Color Evaporation Model (CEM)

Heavy quarkonia production is considered proportional to the cc cross-section.
The proportionality factor is fitted to data. It is independent from p; and
rapidity.

« NRQCD, or Color Octet Model (COM) NLO, NNLO*

the cc pair can be produced in an octet state. The neutralization is
realized non-perturbatively via exchange of multiple soft gluons, that
do not affect the initial cc kinematics.

« Color Singlet Model (CSM) NLO, NNLO*
at LO, a third hard gluons is use to neutralized the cc pair.
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Production mechanism (2)

Recent developments on CSM

« s-channel cut: allow the cc pair to be off-shell, prior to
interaction with the 3 hard gluon
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PRL 100, 032006 (2008)

« CSM at LO, NLO (@RHIC), NNLO* (@Fermilab)

« Accounting for J/y production from “intrinsic” charm
(taken from one of the incoming protons)
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Comparison to models
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Comparison to models
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Models have absolute
normalization; they are
not scaled to the data.

CSM (LO)+S channel cut,
tuned (parametrized) to
CDF, does a fairly good job
at reproducing PHENIX
data.

Very good agreement also
achieved vs pr.
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Comparison to models
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normalization; they are
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CSM (LO)+S channel cut,
tuned (parametrized) to
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at reproducing PHENIX
data.

Very good agreement also
achieved vs pr.

However there are concerns about the validity of s-channel cut
approach and the magnitude of the obtained contribution

[PRD 80, 034018 (2009)]
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CSM at NLO + Intrinsic Charm
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PHENIX J/yp data are scaled down by
~60% to remove decay contributions.

Only p; integrated calculations are
available.

NLO contribution is negative and smaller
than LO. Allows reduction of the
theoretical uncertainty.

IC contribution is of the same order as
NLO gluon fusion, with opposite sign.



Progress are being made

« on the experimental side, to provide more precise data, and more
observables:
other resonances;
heavy quarkonia polarization (not discussed here)

« on the theoretical side, to have calculations at higher orders; to
Include more contributions; and to simultaneously describe
(and/or fit) multiple observables at different energies
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II. d+Au collisions:

Cold nuclear matter effects

17



J/g production in d+Au (1) 2003 data

PR C77, 024912

Nuclear modification factor:

yield in dA

Rga =
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1 y<0: Au going side. Large x in Au nuclei (x,)

7 y>0: deuteron going side. Small x in Au
nuclei (where shadowing is expected)
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J/gp production in d+Au (2) 2008 data
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2008 d+Au data sample = ~40 times
more statistics than 2003 published
results.

Enough statistics to provide 4 different
centrality bins and 9 rapidity bins.
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Systematic errors largely cancel in R,

R., ~1 at negative rapidity
R., < 1 and decreases with centrality at
positive rapidity
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Cold nuclear matter effects (CNM)

Anything that can modify the production of heavy quarkonia in heavy nuclei
collisions (as opposed to p+p) in absence of a QGP

Initial state effects:
- Energy loss of the incoming parton

- Modification of the parton distribution functions (npdf)
- Gluon saturation (CGC)

Final state effects:
Dissociation/breakup of the J/y (or precursor cc quasi-bound state)

20



Modified PDF (npdf)

npdf refer to the fact that parton

distribution (as a function of x,) inside a
nucleon differs whether the nucleon is

Isolated or inside a nucleil.

Gluon nuclear npdfs are poorly known,
especially at low x (shadowing region).

Various parametrizations range from

* little shadowing (HKNO7, nDS, nDSgQ)
* moderate shadowing (EKS98, EPS09)

* large shadowing (EPS08)
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npdf + o, ey VS data

PRC79:059901,2009
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Take a npdf prescription (here EKS)

add a J/y (or precursors) breakup
Cross-section Gy eakup

Fit the best o e 10 the data,
properly accounting for correlated
and uncorrelated errors.

Here a unique cross-section is

used across the entire rapidity
range
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JHEP 0902:014,2009
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Putting o eakup @S a function of Vs and comparing to other experiments
shows some sort of global trend, yet to be explained theoretically.
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Model predictions by R. Vogt
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« Small and moderate shadowing fail to reproduce the high rapidity data
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Model predictions by R. Vogt
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Model predictions by R. Vogt
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« Small and moderate shadowing fail to reproduce the high rapidity data
« Large shadowing (EPS08) does a better job, but does not really match
lower energy data

Either we are missing some ingredient, or the full picture
(Npdf + Greqiyp) IS NOL quite correct.
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Impact of production mechanism (1)

arXiv:0912.4498
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Statement from previous slide is even
more true when properly accounting for
the production kinematics :

How the p; and y of the J/y relates to the
initial partons’ momentum (x, and x.)
depends on the production mechanism.

- for COM like processes, the reaction
involved is of type 2—1 (intrinsic p+)

- for CSM like processes, the reaction
involved is of type 2—2, with a fraction of
the momentum being carried by the third
hard gluon (extrinsic p;)

= A different x-region of the (n)pdf is
sampled, which affects the suppression
pattern.

The position of the anti-shadowing peak is shifted towards higher vy;
The effect of shadowing is smeared.



Impact of production mechanism (2)

arxiv:0912.4498
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X4, X5, Xg dependency

Here use alpha instead of RdAu

_ (04
O pp = appA

Npdf + Gpeakup PICtUre expects scaling
as a function of x,, which is obviously

not observed.
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X4, X5, Xg dependency

PRL. 96. 012304

Here use alpha instead of RdAu
_ o
Oop =0 A
Npdf + Gpeakup PICtUre expects scaling
as a function of x,, which is obviously

not observed

Somewhat better (though not perfect)
scaling observed as a function of x.
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X4, X5, Xg dependency

PRL. 96. 012304

Here use alpha instead of RdAu
. a
Oop =0 A

Npdf + Gpeakup PICtUre expects scaling
as a function of x,, which is obviously
not observed

Somewhat better (though not perfect)
scaling observed as a function of x.

At least for NA3 and E866, the high
Xg decrease can be explained by
initial state energy loss.
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Gluon saturation (1)

Provides a different picture of the dAu collision and how J/y is
produced:

Nucl.Phys.A770:40-56,2006

At low enough X, (in the target nuclei), the gluon wave functions
overlap. The cc pair from the projectile parton interacts with all nucleons
from the target in a coherent way, resulting in the J/p formation.

This is applicable at low x, (forward rapidity) only;

makes the use of Gy e, Irrelevant in this regime.
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Gluon saturation (2)

. Nucl.Phys.A770:40-56,2006
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Gluon saturation (3)

CGC formalism aims to explain
* why X, scaling is not observed,

« why approximate x. scaling is
observed, provided that the
energy difference between the
experiments being compared is
not too large

Calculations also available for Au+Au

collisions (PRL.102:152301,2009)
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Two approaches emerge for describing Cold Nuclear Matter effects on J/y
production in d+Au collisions:

* (poorly constrained) npdf + initial energy l0ss + oy,¢a4up
Here it is important to take all effects into account if one wishes to
describe all the available data (notably at low Xx,)

* gluon saturation CGC
It provides an alternative description of the collision at low x,, and (at
least qualitative) explanations to some of the observed effects.

hovever:

- It has no prediction for high x (right ?).

- How do we proceed in this regime?

- Fall back to the first approach ?

- How does CGC connect to the more standard approach above ?
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I1l. A+A collisions:

anomalous suppression ?
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J/W R, VS N, .

2004 data published in
PRL 98 (2007) 232301
J/IW Raa VS Npars Pr and rapidity

2007 data (~ x4 statistics) are still
being analyzed.
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and extrapolated CNM (1

PRC79:059901,2009
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Here a unique break-up cross section is
derived from the mid and forward
rapidity d+Au data (2003), for two npdf
prescriptions, and extrapolated to
Au+Au

Error bars from CNM are large;

Difference between npdf prescriptions is
modest;

Even in the worst case, there is some
additional suppression observed in most
central Au+Au collisions, beyond CNM,;

There appear to be more anomalous
suppression at forward rapidity.
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Data are from 2005 Cu-Cu and
2004 Au-Au.

Lines are cold nuclear matter
effects extrapolated from 2003
d-Au data, using different oy eaxup
for mid and forward rapidity

Cu-Cu and Au-Au ratios match
well where they overlap.

In Au+Au the suppression is
larger than expected from CNM

There is (still) more suppression
at forward rapidity than at mid-
rapidity, but the difference can
be absorbed by CNM
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J/@ R,,over CNM in Cu+Cu and Au+Au

Calculations from A. Frawley (CATHIE, INT workshop)
Cpreakup 2N errors estimated from 2008 data

PHENIX Au+Auy =0
PHENIX Au+Auy=1.7
PHENIX Cu+Cuy =0
PHENIX Cu+Cuy=1.7

- ®
. EKS98 CNM baseline -
- Wi

| N
| [l i

g
|

Narrow boxes - correlated sys
Wide boxes - CNM baseline sys

B ($]obal for each Idalta set)

i,

1
0 100 200
Npart

]
300 400

Differences between mid
and forward rapidity
measurement are washed
out.

| Suppression beyond cold

nuclear matter effects is

{1 observed, consistent with de-
| confinement
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dependency (1) Cu+Cu collision

- o PHENIX Cu+Cu 0-94% (Run 546 p+pref) | ] PRC80, 041902(R) (2009)

- — Zhao, Rapp Cu+Cu 0-60% with formation (2008) 2 . ® STAR Cu+Cu 0-20% === AdS/CFT+Hydro
[ — - Patra - gluonic dissoc. + flow (MB) (2005) N LELELE 2-Component
2 3L ¥ STAR Cu+Cu 0-60%
- = = Xu, Kharzeev, Satz, Wang (1995) = charm quark
[ — Hot Wind 20-30% (2007) 5 O PHENIX Cu+Cu 0-20% ——— heavy resonance
s ] )
> - 200 GeV Cu+Cu 7 LI?
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4 [ PHENIX PRELIMINARY J EE( 1 :I--___-—_...__ - 1 l
08 - T J ...............
oels % I RS
g %
04 g
0.2 | | | | | | L | | |

py (GeVic) pr (GeV/c)

Left is minimum bias Cu+Cu collisions
Right is 0-20% central Cu+Cu collisions, adding STAR high p; data (red points)

Possible increase of R, Observed at hight p;
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p+ dependency (2) Au+Au collisions

Some hint of increase with p;
for central collisions, but:

e errors are large

* p; coverage is quite modest.

Note that an increase of R,, at
high p+ Is consistent with an
increase of <p2> from p+p to
A+A (Cronin effect ?)

o
o
1.8
1.6
1.4
1.2
1
0.8

0.6

0.4
0.2

< 2
{ -

1.8
1.6
1.4
1.2

1

0.6
0.4
0.2

0

2 PRL 98 (2007) 232301
! ! I

- 0-20% syst___ =+10%
- globa
5 Jyl <035

0.8 [

o lyle[1222] ! b
: o1 5 %
- o 1E 3 -
SN :

p. (GeVic)

p, (GeVic)

45



V. More tools: other resonances
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W’ production

Mass spectra:

Counts/[40 MeV/c?]
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Y production in p+p collisions
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Conclusions

Understanding heavy quarkonia production in p+p collisions has
shown a lot of activity recently, notably due to the availability of
* more precise J/y data

 other resonances

(not to mention J/yp “polarization”, not discussed here)

Two approaches emerge for describing Cold Nuclear Matter
effects on J/y production in d+Au collisions:

* (poorly constrained) npdf + initial energy l0ss + oy eauup
 gluon saturation CGC (at low x)

Note that the interplay between the two is not clear (to me)

It is critical to understand all these CNM effects, and how they
extrapolate to Au+Au, if one wants to be quantitative about any
“anomalous” suppression in Au+Au

52



